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Abstract—Turing computability deals with the question of what
is theoretically computable on a digital computer, and hence is
relevant whenever digital hardware is used. In this paper we
study different possibilities to define computable bandlimited
signals and systems. We consider a definition that uses finite
Shannon sampling series as approximating functions and another
that employs computable continuous functions together with
an effectively computable time concentration. We discuss the
advantages and drawbacks of both definitions and analyze the
connections and differences. In particular, we show that both
definitions are equivalent for many practically relevant signal
classes, e.g. for bandlimited signals with finite energy, but also
that there are important differences, such as for the impulse
responses of BIBO stable LTI systems.

Index Terms—Bandlimited signal, time concentration, effective
approximation, Turing computability, digital and analog signal
processing

I. INTRODUCTION

BANDLIMITED signals play a crucial role in signal
processing [2]–[7]. According to Shannon’s sampling

theorem, a bandlimited signal with finite energy is uniquely
determined by its samples taken at the Nyquist rate, and the
continuous-time signal can be recovered from the samples by
means of the Shannon sampling series [8], [9]. Shannon origi-
nally formulated the sampling theorem for bandlimited signals
with finite energy. By now, many authors have extended
this result in different directions, e.g., to sampling theorems
for more general signal spaces [10]–[12], missing samples
[13], non-bandlimited signals [14], signals bandlimited in
the fractional Fourier transform domain [15]–[17], stochastic
processes [18], and multiband signals [19].

In general, sampling theorems are important whenever
continuous-time signals have to be converted to discrete-
time signals and vice versa. Nowadays, digital technology is
ubiquitous and of enormous importance because most signal
processing is done in the digital domain.
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Despite the widespread and successful use of digital signal
processing it is interesting to study the limitation of digital
signal processing, also in light of the recent progress that
has been made towards the development of novel computing
technologies, such as analog neuromorphic computing and
analog quantum computing.

A fundamental issue in the theory of bandlimited signals is
the inherent infinite time duration of these signals, which is
caused by their band limitation. Often, it is argued that practi-
cally relevant bandlimited signals are essentially time limited,
in the sense that most of their signal energy is contained
in some relevant time interval, or, similarly, that the signal
amplitudes are negligible outside of this interval. Thus, the
signal concentration in the time domain is of general interest
[20]–[22]. The question that we ask is: Can we algorithmically
determine the essential time concentration of a bandlimited
signal?

In this paper we consider the Bernstein spaces Bpπ , i.e.,
bandlimited signals with finite Lp-norm as characteristic time
domain behavior [23]. Often, such signals cannot be repre-
sented in closed form, e.g., in optimization tasks or filter de-
sign problems [24]. Hence, the approximation of such signals
and the control of the approximation error are important.

Nowadays, most signal processing is done on digital hard-
ware, such as microprocessors, field programmable gate arrays
(FPGAs), or digital signal processors (DSPs), and hence ques-
tions of computability arise. In order to study these questions,
we employ the concept of Turing computability. A Turing
machine is an abstract device that manipulates symbols on
a strip of tape according to certain rules [25], [26]. Although
the concept is very simple, a Turing machine is capable of
simulating any given algorithm. Turing machines have no
limitations in terms of memory or computing time, and hence
provide a theoretical model that describes the fundamental
limits of any practically realizable digital computer. Com-
putability is a mature topic in computer science [25]–[30]. In
the signal processing literature, however, it has not received
much attention.

Computability is important for the control of the approxi-
mation error if digital hardware is used to compute the signals.
One of the key concepts of computability is the effective, i.e.,
algorithmic control of the approximation error. If a signal
is computable, then for every prescribed error tolerance ε
we can compute an approximation that is ε-close to the
desired signal. This is illustrated in Fig. 1. In contrast to
classical approximation theory, where the mere mathematical
existence of an approximation is sufficient, the essential point
for computability is that, for any given error tolerance ε > 0,
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Fig. 1. For a computable signal we can always determine an error bar and
then can be sure that the true value lies within the specified error range.
Illustration similar to [31].

the approximation can be algorithmically computed in a finite
number of steps.

In [31]–[35] computability was introduced for bandlimited
signals in Bpπ , using a natural approach that reflects the special
role of the Shannon sampling series. More specifically, accord-
ing to this definition a signal f ∈ Bpπ is called computable if

1) there exists an algorithm that computes a sequence
{fn}n∈N of finite Shannon sampling series in Bpπ , and

2) the approximation error can be effectively controlled, i.e.,
we have ‖f − fn‖Bpπ ≤ 2−n for all n ∈ N.

The motivation for using the Shannon sampling series in this
definition has been twofold. First, the Shannon sampling series
plays a fundamental role in signal processing, especially in the
theory of bandlimited signals and, second, the finite Shannon
sampling series with rational coefficients can be computed on
a digital computer, while having an effective control of the
approximation error. The advantages of the above definition
are apparent: the definition is intuitively clear, very general,
and, since it uses the finite Shannon sampling series, it is
easy to perform analytical calculations, such as taking the
derivative. However, this definition also has its drawbacks. For
example, questions related to the time concentration behavior
cannot easily be answered, and, additionally, it is unclear
how this definition is connected to the usual definition of a
computable continuous function. In this paper we will answer
both questions for signals in Bpπ , 1 < p < ∞. We will also
see that for p =∞, i.e., B∞π,0, the situation is more involved.

Since there are several approaches how to define computable
bandlimited signals it is interesting to analyze the connections
between these definitions and to study which of the definitions
is best suited to work with in certain problems. We will
compare different definitions, and analyze whether they lead
to the same class of signals. In case they are not equivalent,
it is interesting to characterize the differences.

The structure of this paper is as follows. In Section II we
discuss the significance of discrete-time and continuous-time
signals in signal processing. Then in Sections III, IV, and V
we introduce the general notation, the basics of computability
theory, and the definition of a computable bandlimited signal,
respectively. The time-concentration of signals and first con-
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Fig. 2. Processing of analog signals in the digital domain. Illustration similar
to [36].

nections to computability are treated in VI. Our main results
follow in Sections VII–XII. In Section VII we give a complete
characterization of bandlimited locally computable signals
with an effectively computable continuous-time concentration.
In Section VIII we treat the bandlimited signals with an
effectively computable discrete-time concentration. Then, in
Section IX we present some consequences of our previous
results for the computability of the signal norm. Some aspects
of the compiler problem, where one signal representation is
to be converted into another representation, are discussed in
Section X. A further possibility to define locally computable
bandlimited signals is presented in Section XI, and some
connections to the previously introduced signal classes are
derived. In Section XII we give results for the case of
oversampling. Finally, a conclusion is given in Section XIII,
where we discuss some open problems.

II. ANALOG AND DIGITAL DOMAINS

Linear time-invariant (LTI) systems are extensively used in
signal processing. While most real physical systems are analog
and continuous in time, the processing of data is often done
on digital devices. Hence, the conversion of signals from the
analog to the digital domain and vice versa is essential. The
link between both domains is established by various sampling
theorems.

A typical procedure how to process an analog signal in the
digital domain is illustrated in Fig. 2. First, the continuous-
time signal is converted into a discrete-time signal by sam-
pling. Then it is processed by a digital system, which is derived
from the actual analog system. Finally, the discrete-time output
of the system is converted back into a continuous-time signal.
A crucial part of this procedure is the transition from the
analog domain into the digital domain and vice versa. The
conversion of an analog continuous-time signal into a discrete-
time signal can be done by sampling, an operation that, from a
theoretical point of view, causes no problems. In contrast, the
reconstruction, where it is important that the approximation
error can be controlled, can be problematic.

As discussed in the introduction, all bandlimited signals
have an infinite duration. Hence, finite impulse response
continuous-time LTI systems with bandlimited impulse re-
sponse do not exist. Nevertheless, the time concentration of
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the impulse response is an important quantity. In this paper,
we consider the Bernstein spaces Bpπ , 1 ≤ p ≤ ∞, and analyze
the computability of their time concentration behavior. We will
see that the special cases B1

π and B∞π,0, which are important in
the theory of bounded input bounded output (BIBO) stable LTI
systems, are special in the sense that they exhibit a behavior
that is different from the other spaces.

III. NOTATION

By c0 we denote the set of all sequences that vanish at
infinity. Further, by `p(Z), 1 ≤ p < ∞, we denote the usual
spaces of pth-power summable sequences x = {x(k)}k∈Z
with the norm ‖x‖`p = (

∑∞
k=−∞|x(k)|p)1/p, and by `∞(Z)

the space of all bounded sequence with the norm ‖x‖`∞ =
supk∈Z|x(k)|. For Ω ⊆ R, let Lp(Ω), 1 ≤ p <∞, be the space
of all measurable, pth-power Lebesgue integrable functions on
Ω, with the usual norm ‖f‖p =

(∫
Ω
|f(t)|p dt

)1/p
and L∞(Ω)

the space of all measurable functions for which the essential
supremum norm ‖f‖∞ = ess supt∈Ω|f(t)| is finite.

By f̂ we denote the Fourier transform of a function f , and
by f |Z the sequence {f(k)}k∈Z, which is the restriction of f
to the set Z. The Bernstein space Bpσ , σ > 0, 1 ≤ p ≤ ∞,
consists of all entire functions of exponential type at most
σ, whose restriction to the real line is in Lp(R) [37, p. 49].
The norm for Bpσ is given by the Lp-norm on the real line,
i.e., ‖ · ‖Bpσ = ‖ · ‖p. A signal in Bpσ is called bandlimited
to σ. B2

σ is the frequently used space of bandlimited signals
with bandwidth σ and finite energy, and B∞σ the space of all
bandlimited signals with bandwidth σ that are bounded on the
real axis. B∞σ,0 denotes the space of all signals in B∞σ that
vanish on the real axis at infinity. We have Brσ ( Bsσ ( B∞σ,0
for all 1 ≤ r < s < ∞. While the space B2

σ of bandlimited
signals with finite energy has a special physical interpretation,
also the extreme cases in the scale of Bernstein spaces, B1

σ and
B∞σ , are important. They are, for example, used in system and
signal theory to model BIBO stable LTI systems. For every
function h ∈ B1

σ , the convolution integral

(Tf)(t) =

∫ ∞
−∞

h(t− τ)f(τ) dτ

defines a BIBO stable LTI system T : B∞σ → B∞σ .

IV. BASICS OF COMPUTABILITY

In order to study the question of computability, we introduce
some basic notions next. A recursive function is a function,
mapping natural numbers into natural numbers, that is built of
simple computable functions and recursions. We will not go
into details here, for us, it is important that recursive functions
are computable by a Turing machine. Details about recursive
functions can be found for example in [38].

A set A ⊆ N is called recursively enumerable if A = ∅ or
A is the range of a recursive function. A set A ⊆ N is called
recursive if both A and N \ A are recursively enumerable.

Definition 1. We say that a set A ( N is a recursively
enumerable non-recursive set, if A is recursively enumerable
but not recursive, i.e., if A is recursively enumerable but N\A
is not recursively enumerable.

Such recursively enumerable non-recursive sets exist [38,
p. 19, 4.4 Proposition] and will be of great importance for the
results in this paper. For every recursively enumerable non-
recursive set A ( N, there exists a recursive enumeration of
A, i.e., a recursive function φA : N→ A that is surjective and
injective.

Alan Turing introduced the concept of a computable real
number in [25], [26]. Our definition of a computable real
number is based on computable sequences of rational numbers
[28, p. 14].

Definition 2. A sequence of rational numbers {rn}n∈N is
called computable sequence if there exist recursive functions
a, b, s from N to N such that b(n) 6= 0 for all n ∈ N and
rn = (−1)s(n)a(n)/b(n), n ∈ N.

Definition 3. A real number x is said to be computable if there
exist a computable sequence of rational numbers {rn}n∈N and
a recursive function ξ : N → N such that for all M ∈ N we
have |x− rn| ≤ 2−M for all n ≥ ξ(M). By Rc we denote the
set of computable real numbers, and by Cc = Rc + iRc the
set of computable complex numbers.

Note that commonly used constants like e and π are
computable. A non-computable real number was for example
constructed in [39].

Definition 4. A sequence of real numbers {xn}n∈N is called a
computable sequence of computable numbers if there exists a
computable double sequence of rationals {rn,m}n,m∈N and a
recursive function ξ : N×N→ N such that, for all M ∈ N and
all n ∈ N, we have |xn − rn,m| ≤ 2−M for all m ≥ ξ(M,n).

Note that if a computable sequence of computable num-
bers {xn}n∈N converges effectively to a limit x, then x is
a computable real number [28, p. 20, Proposition 1]. By
effective convergence we mean a convergence where we have
an algorithmic control of the approximation error. We will
discuss this in more detail at the end of this section.

Definition 5. A sequence {x(k)}k∈Z in c0 is called com-
putable in c0 if every number x(k), k ∈ Z, is computable
and there exist a computable sequence {xn}n∈N ⊂ c0, where
each xn has only finitely many non-zero elements, and a
recursive function ξ : N → N, such that for all M ∈ N we
have ‖x − xn‖`∞ ≤ 2−M for all n ≥ ξ(M). By Cc0 we
denote the set of all sequences that are computable in c0.

We now give the definition of a computable continuous
function on a compact interval [28, p. 25, Definition A(ii)].

Definition 6. Let I ⊂ R be an interval, where the endpoints
are computable real numbers. A function f : I → R is called
a computable continuous function if

1) f maps every computable sequence {tn}n∈N ⊂ I into
a computable sequence {f(tn)}n∈N of computable num-
bers.

2) there exists a recursive function d : N→ N such that for
all M ∈ N and all t1, t2 ∈ I we have: |t1−t2| ≤ 1/d(M)
implies |f(t1)− f(t2)| ≤ 2−M .
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We next provide the definition of a computable continuous
function on R. This definition is a straight forward extension
of Definition 6.

Definition 7. A function f : R→ R is a called a computable
continuous function if

1) f maps every computable sequence {tn}n∈N ⊂ R into
a computable sequence {f(tn)}n∈N of computable num-
bers.

2) there exists a recursive function d : N × N → N such
that for all M,L ∈ N and all t1, t2 ∈ [−L,L] we have:
|t1 − t2| ≤ 1/d(M,L) implies |f(t1)− f(t2)| ≤ 2−M .

It can be shown that Definition 7 is equivalent to the fol-
lowing definition that uses sequences of rational polynomials
[28, p. 36].

Definition 8. A function f : R → R is called a computable
continuous function if there exists a computable double se-
quence of rational polynomials {pn,L}n∈N,L∈N and a recursive
function ξ : N×N→ N, such that for all L,M ∈ N, we have

max
t∈[−L,L]

|f(t)− pn,L(t)| ≤ 1

2M

for all n ≥ ξ(M,L).

Definition 8 has the advantage that it immediately gives
us a representation of a computable continuous function that
is suited as an input to a Turing machine. According to
Definition 8, a computable continuous function is specified
by a computable double sequence of rational polynomials
{pn,L}n∈N,L∈N and a recursive function ξ : N × N → N.
We call the pair ({pn,L}n∈N,L∈N, ξ) a representation of the
function. Note that this representation is not unique.

V. COMPUTABLE BANDLIMITED SIGNALS

Next, we define computable bandlimited signals using the
same definition as in [31]–[35] that is based on the finite
Shannon sampling series as an approximation function.

Definition 9. A function f ∈ Bpσ , σ > 0, p ∈ [1,∞], is called
elementary computable in Bpσ , if there exists a natural number
L and a sequence of computable numbers {ck}Lk=−L such that

f(t) =

L∑
k=−L

ck
sin
(
σ(t− kπ

σ )
)

σπ
(
t− kπ

σ

) .

The building blocks of an elementary computable function
are sinc functions. Hence, elementary computable functions
are exactly those functions that can be represented by a
finite Shannon sampling series with computable coefficients
{ck}Lk=−L. Note that every elementary computable function
f is the finite sum of computable continuous functions and
hence a computable continuous function. As a consequence,
for every t ∈ Rc the number f(t) is computable. Further,
the sum of finitely many elementary computable functions
is elementary computable, as well as the product of an
elementary computable function with a computable number.

Definition 10. A signal in f ∈ Bpσ , σ > 0, p ∈ [1,∞) ∩
Rc, is called computable in Bpσ if there exists a computable

Signal
generator

({fn}n∈N, ξ)

M ‖f̃ − f‖Bpσ ≤
1

2M

f̃

Fig. 3. Signal generator that generates the bandlimited signal f̃ (which is
an approximation of f with arbitrarily high accuracy) from the representation
({fn}n∈N, ξ). M specifies the approximation accuracy.

sequence of elementary computable functions {fn}n∈N in Bpσ
and a recursive function ξ : N → N such that for all M ∈ N
we have

‖f − fn‖Bpσ ≤
1

2M
(1)

for all n ≥ ξ(M). For p = ∞, i.e., f ∈ B∞σ,0 we use the
analogous definition, where the Bpσ-norm is replaced with the
B∞σ,0-norm. By CBpσ , σ > 0, p ∈ [1,∞)∩Rc, we denote the set
of all signals in Bpσ that are computable in Bpσ , and by CB∞σ,0
the set of all signals in B∞σ,0 that are computable in B∞σ,0.

According to this definition we can approximate any signal
f ∈ CBpσ , p ∈ [1,∞) ∩ Rc, by an elementary computable
signal, where we have an “effective”, i.e. computable control
of the approximation error. For every prescribed approximation
error 1/2M , we can compute an index M0 = ξ(M) such that
the approximation error ‖f − fn‖Bpπ is less than or equal to
1/2M for all n ≥ M0. Hence, the type of convergence that
we have in (1) is called effective convergence.

We see from Definition 10 that a computable bandlimited
signal f in CBpσ , σ > 0, p ∈ [1,∞) ∩ Rc, is specified by
a computable sequence of elementary computable functions
{fn}n∈N in Bpσ and a recursive function ξ. We use the notation
({fn}n∈N, ξ) to denote this representation of f .

Remark 1. If f is a computable bandlimited signal according
to Definition 10, i.e., if f ∈ CBpπ , p ∈ [1,∞) ∩ Rc, or
f ∈ CB∞π,0, then f is also a computable continuous function
according to Definition 7, or, equivalently, Definition 8. The
proof of this fact will be given in the Appendix.

In Definition 10 we introduced computable bandlimited sig-
nals. The basis for this definition is the time domain behavior
of bandlimited signals and Shannon’s sampling theorem. We
further have seen that for f ∈ CBpσ , the pair ({fn}n∈N, ξ) is
a representation of f . Using this representation, the signal f
can be approximated, as described in Definitions 9 and 10,
up to any given accuracy and generated for example by a
signal generator, as depicted in Fig. 3. Note that the operating
principle of the signal generator can be analog or digital.

In general, a signal generator obtains some description
of the signal to be generated, such as the representation
({fn}n∈N, ξ) in our example. However, other descriptions are
possible and might be preferred by the user depending on the
application. These descriptions could include approximations
by finite duration splines, signal representations in the fre-
quency domain, or signal representations based on the time
domain concentration. If such a different description is given,
it needs to be converted into the representation ({fn}n∈N, ξ)
that is understood by the signal generator in our example.
Often, it is expected that this conversion can be performed
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automatically by a program, i.e., a Turing machine. This
Turing machine may be seen as a compiler that generates a
suitable signal representation for the signal generator. A piv-
otal question in this context is: for what signal representations
is such an algorithmic conversion possible?

In this paper, we have a detailed look on different signal
representations and study this question for bandlimited signals.
In particular, we consider the signal concentration behavior in
continuous time and discrete time. In many applications, for
example in signal generators or digital-to-analog converters,
the signals are described by their samples, and, therefore,
the time concentration behavior is specified in discrete time.
A relevant question is whether in this case we can also
algorithmically describe the time concentration behavior in
continuous time. We will show that this is possible for a
large class of signal spaces. However, we will also see that
for certain signal spaces, which are important for example in
system theory, this problem is not algorithmically solvable.

VI. TIME CONCENTRATION

Bandlimited signals possess a perfect concentration in the
frequency domain in the sense that the Fourier transform of
a bandlimited signal is non-zero only on some finite interval.
Because of the perfect concentration in the frequency domain,
bandlimited signals cannot simultaneously be perfectly con-
centrated in the time domain.

Next, we return to the question from the introduction and
analyze whether it is possible to algorithmically determine the
essential time duration of bandlimited signals. For a signal
f ∈ Bpπ , 1 ≤ p <∞, the expression∫ L

−L
|f(t)|p dt (2)

can be considered as a measure of the “amount” of the signal
f that is located within the interval [−L,L]. Further, the
expression∫ ∞

−∞
|f(t)|p dt−

∫ L

−L
|f(t)|p dt =

∫
|t|>L

|f(t)|p dt (3)

can be seen as a measure of the concentration of the
continuous-time signal f on the time interval [−L,L]. The
smaller the value, the more concentrated the signal is on the
interval. Hence, the study of the time concentration behavior
is closely related to the question of how fast the sequence of
functions {fL}L∈N, given by

fL(t) =

{
f(t), |t| ≤ L,
0, |t| > L,

converges to f in the Lp-norm.
For all signals f ∈ Bpπ , the expression in (3) converges to

zero as L tends to infinity. The question now is whether, and
under what conditions on f , this convergence is effective, i.e.,
can be described algorithmically.

If f ∈ CBpπ , p ∈ [1,∞) ∩ Rc, then there exists a com-
putable sequence {fn}n∈N of elementary computable func-
tions in Bpπ such that ‖f − fn‖Bpπ ≤ 2−n. It follows that

∣∣‖f‖Bpπ − ‖fn‖Bpπ ∣∣ ≤ 2−n, which shows that ‖f‖Bpπ ∈ Rc.
Moreover, since the sequence{∫ L

−L
|f(t)|p dt

}
L∈N

is monotonically increasing, the convergence in (3) is effective
[28, p. 20, Corollary 2a]. Thus, we have an algorithmic
description of the time concentration behavior.

VII. COMPLETE CHARACTERIZATION OF LOCALLY
COMPUTABLE SIGNALS

Although the approach taken in Definition 10 is reason-
able from an application’s perspective, several mathematical
problems arise. For example, the Shannon sampling series at
Nyquist rate does in general not provide a stable approxima-
tion process with norm convergence for signals f ∈ B1

π or
f ∈ B∞π,0 [40]. Further, for B∞π,0 there exists no stable linear
approximation process that uses only the samples {f(k)}k∈Z
for the approximation [41]. Moreover, focusing on the local
signal behavior in the definition of a computable bandlimited
signal may be closer to practical applications, where we
often have only a local description of the signals. Hence, we
introduce a second very natural definition of a computable
bandlimited signal.

The main result of this section is to show that both defini-
tions, i.e. Definition 10 and the definition that will follow, are
equivalent for p ∈ (1,∞) ∩ Rc, and, therefore, describe the
same class of computable bandlimited signals.

In the next definition, the concentration of the signal in the
time domain is the central property.

Definition 11. We say that a signal f ∈ Bpσ , σ > 0, p ∈
[1,∞) ∩ Rc has an effectively computable continuous-time
concentration if

1) f is a computable continuous function, and
2) there exists a recursive function ξ : N→ N such that for

all M ∈ N we have∣∣∣∣∣‖f‖pBpσ −
∫ L

−L
|f(t)|p dt

∣∣∣∣∣ ≤ 1

2M
(4)

for all L ≥ ξ(M).
By CCBpσ , σ > 0, p ∈ [1,∞)∩Rc, we denote the set of all sig-
nals f ∈ Bpσ that have an effectively computable continuous-
time concentration. For p =∞, i.e., signals f ∈ B∞σ,0, we use
an analogous definition, where (4) is replaced by∣∣∣∣‖f‖B∞

σ,0
− max
t∈[−L,L]

|f(t)|
∣∣∣∣ ≤ 1

2M
,

and denote the set of such functions by CCB∞σ,0,

Remark 2. Condition 1 in this definition is reasonable, because
it ensures that

∫ L
−L|f(t)|p dt is computable. Condition 2

implies that
∫
|t|>L|f(t)|p dt ≤ 2−M for all L ≥ ξ(M). As

discussed before, this is a measure for the time concentration
of f .

Remark 3. Condition 2 in Definition 11 implies that ‖f‖Bpσ ∈
Rc: Since f is a computable continuous function, for p ∈
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[1,∞)∩Rc, the sequence {
∫ L
−L|f(t)|p dt}L∈N is a computable

sequence of computable numbers that converges effectively to
‖f‖pBpσ . Hence, ‖f‖Bpσ is a computable number. The same is
true for p =∞ with the usual modifications.

Definition 11, which employs the concept of a computable
continuous function and the effective approximation of the
norm, gives us more flexibility to represent a function f ,
compared to Definition 10, where only finite Shannon sam-
pling series are allowed for the approximation. In particular,
the building blocks of the approximation do not have to be
in Bpπ . This flexibility will be used in Section XII to study
oversampling.

According to Definition 11, a function f ∈ CCBpπ is
described by two algorithms. The first computes for a given
input L ∈ Rc the representation of f on the interval [−L,L].
We denote this program by Φf . The second computes for
an input M ∈ N the time concentration according to (4).
We denote this program by ξ. Hence, a signal f ∈ CCBpπ
is completely described by the pair of programs (Φf , ξ).

The next theorem shows that the sets CCBpπ and CBpπ
coincide for p ∈ (1,∞) ∩ Rc.

Theorem 1. Let p ∈ (1,∞)∩Rc. Then we have CBpπ = CCBpπ .

Theorem 1 gives us a simple characterization of CBpπ sig-
nals. Note that such a characterization is very useful, because
for a given signal f ∈ Bpπ it is sometimes difficult to check
whether f ∈ CBpπ or not, by using the definition of CBpπ .

Before we prove Theorem 1, we give a result for the cases
p = 1 and p =∞ which have been excluded in Theorem 1.

Theorem 2. For p = 1 and p = ∞, we have CB1
π ⊆ CCB1

π

and CB∞π,0 ( CCB∞π,0, respectively.

Remark 4. Whether CB1
π is a proper subset of CCB1

π is an
open problem.

Proof of Theorem 1. We first show that CBpπ ⊇ CCBpπ . Let
p ∈ (1,∞) ∩ Rc and f ∈ CCBpπ be arbitrary. For N ∈ N, we
consider

FN (t) = (PNf)(t) =

∫ N

−N
f(τ)

sin(π(t− τ))

π(t− τ)
dτ. (5)

The integral in (5) is computable for all t ∈ Rc, because f is a
computable continuous function on [−N,N ] [28, Theorem 5,
p. 35]. For p ∈ (1,∞), PN : Lp(R) → Lp(R) is a bounded
linear operator, and we have ‖PN‖Lp(R)→Lp(R) ≤ C1(p),
where the constant C1(p) is independent of N [42, p. 256]. It
follows that FN ∈ Lp(R). Let

gN (t) =

{
f(t), |t| ≤ N,
0, |t| > N.

Since f is continuous on [−N,N ], we see that gN ∈ L1(R).
It follows that

FN (t) =
1

2π

∫ π

−π
ĝN (ω) eiωt dω,

according to the convolution theorem of the Fourier transform.
This shows that FN ∈ Bpπ .

Since f is a computable continuous function on [−N,N ],
it follows that {FN (k)}k∈Z is a computable sequence of
computable numbers. For |t| ≥ N + 1 we have

|FN (t)| ≤
∫ N

−N
|f(τ)|

∣∣∣∣ sin(π(t− τ))

π(t− τ)

∣∣∣∣ dτ

≤ 1

|t| −N

∫ N

−N
|f(τ)| dτ. (6)

For M > N , let

(SMFN )(t) =

M∑
k=−M

FN (k)
sin(π(t− k))

π(t− k)
.

For M > N and K ∈ N, we have∫ ∞
−∞
|(SM+KFN )(t)− (SMFN )(t)|p dt

≤ C2(p)
∑

M+1≤|k|≤M+K

|FN (k)|p

≤

(∫ N

−N
|f(τ)| dτ

)p
C2(p)

∑
M+1≤|k|≤M+K

1

(|k| −N)p

= 2

(∫ N

−N
|f(τ)| dτ

)p
C2(p)

M+K∑
k=M+1

1

(k −N)p
, (7)

where we used the Plancherel–Pólya inequality [43, p. 152]
in the first inequality and (6) in the second. Further, we have

M+K∑
k=M+1

1

(k −N)p
=

M+K−N∑
k=M+1−N

1

kp

<

M+K−N∑
k=M+1−N

∫ k

k−1

1

τp
dτ =

∫ M+K−N

M−N

1

τp
dτ

=
1

p− 1

(
1

(M −N)p−1
− 1

(M +K −N)p−1

)
<

1

(p− 1)(M −N)p−1
. (8)

Combining (7) and (8), we obtain∫ ∞
−∞
|(SM+KFN )(t)− (SMFN )(t)|p dt

< 2

(∫ N

−N
f(τ) dτ

)p
C2(p)

(p− 1)(M −N)p−1

for all M > N and K ∈ N arbitrary. This shows that
{SMFN}M∈N is an effective Cauchy sequence that converges
to FN in the Lp-norm. Hence, the convergence is effective,
and it follows that FN ∈ CBpπ . Since f ∈ CCBpπ ( Bpπ , we
have

f(t) = (Pf)(t) =

∫ ∞
−∞

f(τ)
sin(π(t− τ))

π(t− τ)
dτ, t ∈ R,

and consequently

f(t)− FN (t) =

∫
|τ |>N

f(τ)
sin(π(t− τ))

π(t− τ)
dτ, t ∈ R.
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Let

hN (t) =

{
0, |t| ≤ N,
f(t), |t| > N.

Then we have

‖f − FN‖Bpπ = ‖PhN‖Bpπ ≤ C1(p)‖hN (t)‖p

= C1(p)

(
‖f‖pBpπ −

∫ N

−N
|f(t)|p dt

) 1
p

,

where the content of the parenthesis in the last line converges
effectively to zero because f ∈ CCBpπ . Thus, {FN}N∈N
converges effectively to f in the Bpπ-norm. This shows that
f ∈ CBpπ , and consequently that CBpπ ⊇ CCBpπ .

It remains to show that CBpπ ⊆ CCBpπ . Let p ∈ [1,∞) ∩
Rc and f ∈ CBpπ be arbitrary. Since f ∈ CBpπ , there exists
a computable sequence {fn}n∈N of elementary computable
functions, such that

‖f − fn‖Bpπ ≤
1

2n

for all n ∈ N. Let M ∈ N be arbitrary. We choose n1 = M+1.
Since fn1

is a finite Shannon sampling series, there exists a
recursive function ξ : N→ N such that(∫

|t|>N
|fn1(t)|p dt

) 1
p

≤ 1

2M+1

for all N ≥ ξ(M). Hence, for N ∈ N, we have(
‖f‖pBpπ −

∫ N

−N
|f(t)|p dt

) 1
p

=

(∫
|t|>N

|f(t)|p dt

) 1
p

≤

(∫
|t|>N

|f(t)− fn1
(t)|p dt

) 1
p

+

(∫
|t|>N

|fn1
(t)|p dt

) 1
p

≤ 1

2n1
+

(∫
|t|>N

|fn1
(t)|p dt

) 1
p

.

Thus, for N ≥ ξ(M), we obtain(
‖f‖pBpπ −

∫ N

−N
|f(t)|p dt

) 1
p

≤ 1

2M+1
+

1

2M+1
=

1

2M
,

and consequently

‖f‖pBpπ −
∫ N

−N
|f(t)|p dt ≤ 1

2pM
<

1

2M
, (9)

which shows that item 2 of Definition 11 is satisfied. Further,
item 1 is satisfied, because f ∈ CBpπ . Hence, we have shown
that f ∈ CCBpπ . Note that the previous calculation is valid
also for p = 1. Thus, we have CCB1

π ⊇ CB1
π , which proves

the p = 1 case of Theorem 2.

Proof of Theorem 2. The proof for p = 1 has already been
given in the proof of Theorem 1.

It remains to prove the case p = ∞. Let f ∈ CB∞π,0. In
[44] it has been shown that if f ∈ CB∞π,0 then there exists a

recursive function η : N → N such that for all M ∈ N we
have

|f(t)| ≤ 1

2M

for all t ∈ R with |t| ≥ η(M). It follows for

gL(t) =

{
f(t), |t| ≤ L,
0, |t| > L,

that ∣∣∣∣‖f‖B∞
π,0
− max
t∈[−L,L]

|f(t)| dt
∣∣∣∣ =

∣∣∣‖f‖B∞
π,0
− ‖gL‖∞

∣∣∣
≤ ‖f − gL‖∞ = sup

|t|>L
|f(t)| ≤ 1

2M

for all L ≥ η(M). Thus, item 2 of Definition 11 is satisfied.
Item 1 is satisfied, because f ∈ CB∞π,0. Hence, we have shown
that f ∈ CCB∞π,0, and consequently that CB∞π,0 ⊆ CCB∞π,0. The
fact that CB∞π,0 is a proper subset of CCB∞π,0 will be proved in
Remark 6.

As we have seen, there are different approaches to define
computable bandlimited signals. It is interesting to further
explore the similarities and differences of these definitions.
In particular, it would be desirable to identify a simple
approach that is well suited to verify computability in practical
applications.

Theorem 3. Let p ∈ (1,∞) ∩ Rc. Then we have f ∈ CBpπ if
and only if

1) f ∈ Bpπ ,
2) f is a computable continuous function, and
3) ‖f‖Bpπ ∈ Rc.

For many practically relevant problems, we know that the
involved signals f ∈ Bpπ , p ∈ (1,∞) ∩ Rc, are com-
putable continuous functions. Hence, as soon as we know that
‖f‖Bpπ ∈ Rc, we can conclude that f ∈ CBpπ .

Proof of Theorem 3. Let p ∈ (1,∞) ∩ Rc. “⇒”: Let f ∈
CBpπ . Then there exists a computable sequence {fn}n∈N of
elementary computable functions such that

‖f − fn‖Bpπ ≤
1

2n

for all n ∈ N. Since fn is a finite Shannon sampling series,
we have ‖fn‖Bpπ ∈ Rc. Hence, it follows that∣∣‖f‖Bpπ − ‖fn‖Bpπ ∣∣ ≤ ‖f − fn‖Bpπ ≤ 1

2n
,

i.e., ‖f‖Bpπ is the limit of a computable sequence of com-
putable numbers that converges effectively. This implies that
‖f‖Bpπ ∈ Rc [28, p. 20, Proposition 1]. Since f ∈ CBpπ , f
is also a computable continuous function. This completes the
first part of the proof.

“⇐”: Let f ∈ Bpπ be a computable continuous function with
‖f‖Bpπ ∈ Rc. For N ∈ N, we set

IN =

∫ N

−N
|f(f)|p dt.
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TMTime

({fn}n∈N, ξ)

M
L

Fig. 4. Turing machine TMTime that computes a time instant L such that the
signal f is essentially concentrated on the interval [−L,L].

TMConv(Φf , ξ) ({fn}n∈N, ξ̃)

Fig. 5. Turing machine TMConv that converts any representation (Φf , ξ) of
f ∈ CCBpπ into a representation ({fn}n∈N, ξ̃) of a computable bandlimited
signal in CBpπ .

Since f is a computable continuous function, it follows that
{IN}N∈N is a monotonically increasing computable sequence
of computable numbers. Its limit ‖f‖pBpπ is a computable num-
ber, because ‖f‖Bpπ ∈ Rc. Since a monotonically increasing
computable sequence of computable numbers that converges
to a computable number, converges effectively [28, p. 20,
Corollary 2a], we see that f ∈ CCBpπ . From Theorem 1 it
follows that f ∈ CBpπ .

In the proof of Theorem 1, we have seen in (9) that the
time concentration can be algorithmically determined, i.e.,
computed on a Turing machine. In other words, there exists
a Turing machine TMTime with inputs M ∈ N and f ∈ CBpπ ,
where f is represented by the pair ({fn}n∈N, ξ), that computes
a time instant L ∈ Rc such that∣∣∣∣∣‖f‖pBpπ −

∫ L

−L
|f(t)|p dt

∣∣∣∣∣ ≤ 1

2M
.

This Turing machine is depicted in Fig. 4.
The proof of Theorem 1 gives us also the existence of

a Turing machine TMConv that takes a signal f ∈ CCBpπ ,
p ∈ (1,∞)∩Rc, represented by (Φf , ξ), and outputs a repre-
sentation ({fn}n∈N, ξ̃) of a computable bandlimited signal in
CBpπ .

The results of this section, in particular the theorems and
the existence of the Turing machines TMTime and TMConv,
show that, for p ∈ (1,∞) ∩ Rc, both approaches to define
computability for signals in Bpπ (Definitions 10 and 12 are)
valid and useful.

VIII. LOCAL COMPUTABILITY AND THE
DISCRETE `p-NORM

Our goal in this section is to continue the analysis of the
time concentration behavior, only now in discrete time.

We first present an example which illustrates the difference
between time concentration in discrete time and continuous
time. Already very simple signals show that a good concen-
tration behavior in discrete time does not necessarily lead to a
good concentration in continuous time. Consider, for example,
the signal

f1(t) =
sin(πt)

πt
.

We have

f1(k) =

{
1, k = 0,

0, k ∈ Z \ {0}.

This shows that f1 has an excellent discrete-time concentration
behavior. The concentration can be measured for example in
the `1-norm, which plays an important role in the theory of
BIBO stable LTI systems. However, we have f1 6∈ B1

π , because
the concentration in continuous time is too weak for the signal
to be absolutely integrable.

For N ∈ N, let

gN (t) =
1

C(N)

N∑
k=1

(−1)k
sin(π(t− k))

π(t− k)

with

C(N) = − 1

π

N∑
k=1

1

k − 1
2

.

The signal gN has interesting properties. For any δ > 0,
we can find an N0 ∈ N such that |gN (k)| ≤ δ for all
k ∈ Z and all N ≥ N0. On the other hand, we have
|gN (N + 1/2)| = 1 for all N ∈ N. Hence, for N large
enough, the signal values of gN in discrete time can be made
arbitrarily small, whereas in continuous time this is not the
case. It is interesting to note that this phenomenon implies
that we cannot always algorithmically compute the continuous-
time concentration from the discrete-time signal behavior, as
we will see.

Definition 12. We say that a signal f ∈ Bpπ , p ∈ [1,∞) ∩Rc
has an effectively computable discrete-time concentration if

1) f is a computable continuous function, and
2) there exists a recursive function ξ : N→ N such that for

all M ∈ N we have∣∣∣∣∣‖f |Z‖p`p −
N∑

k=−N

|f(k)|p
∣∣∣∣∣ ≤ 1

2M
(10)

for all N ≥ ξ(M).
By DCBpπ , p ∈ [1,∞) ∩ Rc, we denote the set of all signals
f ∈ Bpπ that have an effectively computable discrete-time
concentration. For p = ∞, i.e., signals f ∈ B∞π,0, we use
an analogous definition, where (10) is replaced by∣∣∣∣∣‖f |Z‖`∞ − max

k∈Z,
|k|≤N

|f(k)|

∣∣∣∣∣ ≤ 1

2M
,

and denote the set of such functions by DCB∞π,0.

Remark 5. Condition 2 in Definition 12 implies that ‖f |Z‖`p ∈
Rc: Since f is a computable continuous function, for p ∈
[1,∞) ∩ Rc, the sequence {

∑L
k=−L|f(k)|p dt}L∈N is a

computable sequence of computable numbers that converges
effectively to ‖f |Z‖p`p . Hence, ‖f |Z‖`p is a computable num-
ber. The same is true for p =∞ with the usual modifications.

In Theorem 1 we provided, for p ∈ (1,∞) ∩ Rc, a
characterization of computable bandlimited signals using the
continuous-time concentration behavior. In the next theorem
we give the analogous result for the discrete-time concentra-
tion behavior.
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Theorem 4. Let p ∈ (1,∞)∩Rc. Then we have CBpπ = DCBpπ .

Proof. We first show that CBpπ ⊆ DCBpπ . Let p ∈ (1,∞)∩Rc
and f ∈ CBpπ be arbitrary. Then f is a computable continuous
function according to Remark 1. Further, let

(SNf)(t) =

N∑
k=−N

f(k)
sin(π(t− k))

π(t− k)
,

then {SNf}N∈N converges effectively to f in the Bpπ-norm
[35, Theorem 2]. We have

‖f |Z‖p`p −
N∑

k=−N

|f(k)|p =
∑
|k|>N

|f(k)|p

=

∞∑
k=−∞

|f(k)− (SNf)(k)|p

≤ (1 + π)p‖f − SNf‖pBpπ ,

where we used Nikol’skiı̆’s inequality [37, p. 49] in the last
inequality. This shows that item 2 of Definition 12 is satisfied.

We now show that CBpπ ⊇ DCBpπ . Let p ∈ (1,∞)∩Rc and
f ∈ DCBpπ be arbitrary. Since f is a computable continuous
function, it follows from the definition that {f(k)}k∈Z is a
computable sequence of computable numbers, and, as a con-
sequence, {SNf}N∈N is a computable sequence of elementary
computable functions in Bpπ . Further, we have

‖f − SNf‖pBpπ ≤ C2(p)

∞∑
k=−∞

|f(k)− (SNf)(k)|p

= C2(p)
∑
|k|>N

|f(k)|p

= C2(p)

(
‖f |Z‖p`p −

N∑
k=−N

|f(k)|p
)
,

where we used the Plancherel–Pólya inequality [43, p. 152]
in the first inequality. Thus, {SNf}N∈N converges effectively
to f in the Bpπ-norm, which implies that f ∈ CBpπ .

Combining Theorems 1 and 4 immediately gives the next
corollary.

Corollary 1. Let p ∈ (1,∞) ∩ Rc. Then we have DCBpπ =
CCBpπ .

Corollary 1 couples the discrete-time behavior with the
continuous-time behavior of the signal. Theorem 4 and Corol-
lary 1 show that, for p ∈ (1,∞)∩Rc, Definitions 10, 11, and
12 all lead to the same set of computable bandlimited signals.
For p = 1 and p = ∞ this is no longer the case. Hence, for
the practical relevant spaces B1

π and B∞π,0, we can, in general,
not infer the computability of the continuous-time signal from
a good computability behavior of the discrete-time signal.

Theorem 5. We have CB1
π ( DCB1

π and CB∞π,0 ( DCB∞π,0.

Proof. The fact that CB1
π ( DCB1

π is a direct consequence of
[35, Corollary 1].

Next, we prove that CB∞π,0 ( DCB∞π,0. For the proof we
employ the same function f3 that was used in the proof of

Corollary 2 in [44]. We review its construction. For n ∈ N,
let

gn(t) =

2n∑
k=0

(−1)k
sin(π(t− k))

π(t− k)
,

and

C(n) = gn(2n+ 1/2) =
1

π

2n∑
k=0

1

2n+ 1
2 − k

.

Further, let A ( N be an arbitrary recursively enumerable
non-recursive set, and φA : N → A a recursive enumeration
of A, where φA is a bijection. Then f3 is defined as

f3(t) =

∞∑
n=1

1

2φA(n)

gn(t−Nn)

C(n)
,

where {Nn}n∈N is a strictly monotonically increasing com-
putable sequence of even numbers. We can assume that Nn >
n2. For more details about the construction of {Nn}n∈N, see
[44]. Note that f3 ∈ B∞π,0 and f3|Z ∈ Cc0, according to [44,
Corollary 2].

In [44, Remark 6] it was shown that f3 6∈ CB∞π,0. We will
prove next that f ∈ DCB∞π,0, by verifying that items 1 and 2
of Definition 12 are satisfied.

We start with item 1, i.e., we prove that f3 is a computable
continuous function on R. To this end, we will check that f3

satisfies all conditions of Definition 8. For n ≥ 2 and t ≤ −n
we have

|gn(t)| ≤ 1

π

2n∑
k=0

1

|t− k|
≤ 1

π

2n∑
k=0

1

n− k

<
1

π

2n∑
k=0

∫ k

k−1

1

n+ τ
dτ =

1

π

∫ 2n

−1

1

n+ τ
dτ

=
1

π
log

(
3n

n− 1

)
≤ 1

π
log(6).

Let L ∈ N, L ≥ 2 be arbitrary. For n > L and t ∈ [−L,L]
we have

t−Nn ≤ L−Nn < n−Nn < n− n2 < −n,

and consequently

|gn(t−Nn)| < 1

π
log(6).

Let

qm(t) =

m∑
n=1

1

2φA(n)

gn(t−Nn)

C(n)
.

It follows that

|f3(t)− qm(t)| ≤
∞∑

n=m+1

1

2φA(n)C(n)
|gn(t−Nn)|

<
1

π
log(6)

∞∑
n=m+1

1

2φA(n)C(n)

<
1

π

log(6)

C(m+ 1)

∞∑
n=m+1

1

2φA(n)

≤ 1

π

log(6)

C(m+ 1)
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p = 1

CB1π ⊆ CCB1π
CB1π ( DCB1π

p ∈ (1,∞) ∩ Rc

CBpπ = DCBpπ = CCBpπ

p =∞
CB∞π,0 ( CCB∞π,0
CB∞π,0 ( DCB∞π,0

Thm. 2, 5 Thm. 1, 4, and Cor. 1 Thm. 2, 5

Fig. 6. Summary of the main findings of Sections VII and VIII.

for all t ∈ [−L,L] and m ≥ L. Hence, we see that the
computable sequence {qm}m∈N converges effectively to f3

on [−L,L]. In our calculation, the convergence speed depends
recursively on L. Since qm is a finite sum of sinc functions
with computable coefficients, we can approximate each qm on
the interval [−L,L] by the Taylor polynomial Qm,L of qm
with sufficiently high degree, such that

|qm(t)−Qm,L(t)| ≤ 1

2m

for all t ∈ [−L,L]. Note that {Qm,L} is a commutable double
sequence of polynomials. We have

|f3(t)−Qm,L(t)| ≤ |f3(t)− qm(t)|+ |qm(t)−Qm,L(t)|

<
1

π

log(6)

C(m+ 1)
+

1

2m
<

2

C(m+ 1)
+

1

2m

for all t ∈ [−L,L]. Thus, f3 is a computable continuous func-
tion according to Definition 8. Hence, item 1 of Definition 12
is satisfied.

Since f3|Z ∈ Cc0, it follows that ‖f3|Z‖`∞ is a computable
number. Further, {max|k|≤N |f3(k)|}N∈N is a monotonically
increasing sequence of computable numbers. Hence, according
to [28, p. 20, Corollary 2a], the convergence of∣∣∣∣∣‖f3|Z‖`∞ − max

k∈Z,
|k|≤N

|f3(k)|

∣∣∣∣∣
is effective, and item 2 of Definition 12 is satisfied.

We summarize some of the main findings of Sections VII
and VIII in Fig. 6.

IX. COMPUTABILITY OF THE NORM

In Remarks 3 and 5 we have seen that the computability
of the norms ‖f‖Bpσ and ‖f |Z‖`p is of high relevance. In this
section we further discuss the computability of these norms.

1) For every f ∈ Bpσ , p ∈ [1,∞) ∩ Rc, that is additionally
a computable continuous function, we have f ∈ CCBpσ if
and only if ‖f‖Bpσ ∈ Rc. That is, for all functions f ∈ Bpσ ,
p ∈ [1,∞)∩Rc, that satisfy condition 1 in Definition 11,
condition 2 in Definition 11 is equivalent to ‖f‖Bpσ ∈ Rc.
The “⇒” direction of this equivalence was discussed in
Remark 3 and the “⇐” direction was treated in [35].

2) For every f ∈ B∞σ,0 that is additionally a computable
continuous function, we have lim|t|→∞|f(t)| = 0. Hence,
there exists a natural number N0 such that ‖f‖B∞

σ,0
=

max|t|≤N0
|f(t)|, and, consequently, we have ‖f‖B∞

σ,0
∈

Rc [28, p. 40, Theorem 7]. This shows that, for p =∞,
condition 2 in Definition 11 is expendable.

3) The statement of item 1 in this list is also true for
Definition 12: For all functions f ∈ Bpπ , p ∈ [1,∞)∩Rc,
that satisfy condition 1 in Definition 12, condition 2 in
Definition 12 is equivalent to ‖f |Z‖`p ∈ Rc.

4) The statement of item 2 in this list is also true for
Definition 12. That is, for p = ∞, condition 2 in
Definition 12 is expendable.

Regarding the condition ‖f‖Bpπ ∈ Rc, we see a very
interesting difference between p ∈ [1,∞) ∩ Rc and p = ∞.
For computable continuous functions f ∈ B∞π,0, we always
have ‖f‖B∞

π,0
∈ Rc. In contrast, for p ∈ [1,∞) ∩ Rc, as it

will become clear from the proof of Theorem 6, there exist
computable continuous functions f ∈ Bpπ for which we have
‖f‖Bpπ 6∈ Rc.
Remark 6. Items 1 and 4 imply that DCB∞π,0 = CCB∞π,0. From
Theorem 5 we know that CB∞π,0 ( DCB∞π,0. Hence, we also
have CB∞π,0 ( CCB∞π,0.

Items 2 and 4 in the above discussion can, in general, not
be exploited for solving practical problems algorithmically.
Consider, for example, the problem of computing the peak
value of computable continuous signals in B∞π,0. We can ask:
Does there exist a Turing machine that for every input f ∈
B∞π,0, described as a computable continuous function, is able
to compute ‖f‖B∞

π,0
? In [44] it has been shown that such a

Turing machine does not exist.

X. COMPILER PROBLEM

In this section we come back to the problem of automati-
cally converting one signal representation into another.

Let f ∈ DCB∞π,0, and assume that we have a representation
of f according to Definition 12, i.e., we have an algorithm that
computes the values of f as a computable continuous function
and an algorithm that describes the discrete-time concentration
of f on Z, as in condition 2 in Definition 12. The goal is
to algorithmically compute the continuous-time concentration
behavior of f on R in the sense of condition 2 in Definition 11.
In general, this is not possible. That is, there exists no Turing
machine that performs this computation for arbitrary inputs
f ∈ DCB∞π,0 [44].

Clearly, for every f ∈ DCB∞π,0 there exists a recursive
function ξ that describes the concentration behavior according
to condition 2 in Definition 11. However, there exists no
Turing machine that always can compute this function from a
representation of f according to Definition 12.

On the positive side, as we have shown, for f ∈ DCBpπ ,
p ∈ (1,∞)∩Rc, and in particular for computable bandlimited
signals with finite energy, this conversion can always be
performed algorithmically.

Assume that we have a computable continuous function f .
As we have seen, if f ∈ Bpπ , p ∈ (1,∞) ∩ Rc, then we
can without problems switch between computability on R and
computability on Z. In contrast, for B∞π,0 this is not possible,
although a computability representation on Z contains all
information about the signal, as we will discuss next. For every
f ∈ CB∞π,0, there exists a Turing machine TMf,Z that for every
input k ∈ Z computes f(k) = TMf,Z(k). That is, there exists
a Turing machine that for all inputs (k,M) ∈ N2 computes
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a rational number rM,k such that |f(k) − rM,k| ≤ 2−M .
Further, the signal f is uniquely determined by the samples
{f(k)}k∈Z, i.e., f ∈ B∞π,0 with f(k) = 0 for all k ∈ Z,
implies f(t) = 0 for all t ∈ R. Hence, the above description of
the signal contains all information about the signal. However,
from this complete information, we cannot always compute a
description of the continuous time behavior as in condition 2
in Definition 11.

XI. A FURTHER POSSIBILITY TO DEFINE LOCALLY
COMPUTABLE BANDLIMITED SIGNALS

In [44] a further definition for a locally computable ban-
dlimited signal in B∞π,0 was given. This definition is easily
generalized to signals f ∈ Bpπ , p ∈ [1,∞) ∩ Rc.

Definition 13. We call a signal f ∈ Bpπ , p ∈ [1,∞) ∩ Rc,
locally computable, if there exist a computable double se-
quence of computable continuous functions {fn,L}n∈N,L∈N
and a recursive function ξ : N × N → N such that, for all
M,L ∈ N, we have∫ L

−L
|f(t)− fn,L(t)|p dt ≤ 1

2M
(11)

for all n ≥ ξ(M,L). The set of all locally computable signals
in Bpπ is denoted by LCBpπ . For f ∈ B∞π,0, we replace the
condition (11) by

max
t∈[−L,L]

|f(t)− fn,L(t)| ≤ 1

2M
,

and denote the set of all locally computable signals in B∞π,0
by LCB∞π,0.

We have CBpπ ( LCBpπ , p ∈ (1,∞) ∩ Rc, and CB∞π,0 ⊆
LCB∞π,0, i.e, local computability in B∞π,0 (Definition 13) is a
weaker requirement than computability in B∞π,0 (Definition 10).
In Definition 13 we allow general computable continuous
functions for the approximation, in particular, we do not
require that these functions are in Bpπ or B∞π,0. Further, we do
not demand an effective control of the approximation behavior
globally, but only locally on compact intervals.

Theorem 6. Let p ∈ (1,∞)∩Rc. Then we have CBpπ ( LCBpπ .
Further, we have CB∞π,0 ⊆ LCB∞π,0.

Remark 7. Theorem 6 shows that the requirements of Defini-
tion 13 are too weak in order to obtain a characterization of the
space CBpπ . Although the requirements of Definition 13 allow
us to effectively control the local approximation behavior, we
have no control of

∫
|t|>L|f(t)|p dt that is effective in L.

Proof of Theorem 6. Let p ∈ (1,∞)∩Rc. Further, let A ( N
be a recursively enumerable non-recursive set, and φA : N→
A a recursive enumeration of A, where φA is a bijection. For
n ∈ N, We consider the functions

fn(t) =

n∑
l=1

1

2φA(l)/p

sin(π(t− l))
π(t− l)

.

{fn}n∈N is a computable sequence of computable continuous
functions. Further, let

f(t) =

∞∑
l=1

1

2φA(l)/p

sin(π(t− l))
π(t− l)

.

Since

‖f − fn‖pBpπ ≤ C2(p)

∞∑
k=−∞

|f(k)− fn(k)|p

= C2(p)

( ∞∑
k=n+1

1

2φA(k)

) 1
p

,

where we used the Plancherel–Pólya inequality [43, p. 152]
in the first inequality, we see that

lim
n→∞

‖f − fn‖Bpπ = 0,

i.e., {fn}n∈N converges to f in the Bpπ-norm. Let L ∈ N be
arbitrary. Then, for t ∈ [−L,L] and n > L, we have, for q
satisfying 1/p+ 1/q = 1 that

|f(t)− fn(t)| =

∣∣∣∣∣
∞∑

l=n+1

1

2φA(l)/p

sin(π(t− l))
π(t− l)

∣∣∣∣∣
≤

( ∞∑
l=n+1

1

2φA(l)

) 1
p
( ∞∑
l=n+1

1

πq|t− l|q

) 1
q

.

Since ∞∑
l=1

1

2φA(l)
< 1

and( ∞∑
l=n+1

1

πq|t− l|q

) 1
q

≤

( ∞∑
l=n+1

1

πq(l − L)q

) 1
q

=
1

π

( ∞∑
l=n+1−L

1

lq

) 1
q

<
1

π

( ∞∑
l=n+1−L

∫ l

l−1

1

τ q
dτ

) 1
q

=
1

π

(∫ ∞
n−L

1

τ q
dτ

) 1
q

=
1

π(q − 1)
1
q (n− L)

1
p

,

it follows that

|f(t)− fn(t)| ≤ 1

π(q − 1)
1
q (n− L)

1
p

.

for all t ∈ [−L,L] and n > L. Hence, we have∫ L

−L
|f(t)− fn(t)| dt ≤ 2L max

t∈[−L,L]
|f(t)− fn(t)|

≤ 2L

π(q − 1)
1
q (n− L)

1
p

for all n > L, which shows that {fn}n∈N converges effectively
to f on [−L,L] in the Lp-norm. Hence, we see that f ∈ LCBpπ .

Since ∞∑
l=1

1

2φA(l)
6∈ Rc

according to [28, p. 20, Corollary 2b], we have

‖f |Z‖p`p =

∞∑
l=1

1

2φA(l)
6∈ Rc.

Further, for k ∈ Z, we have

f(k) =

{
2−φA(k)/p, k ≥ 1,

0 k ≤ 0,
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which implies that f |Z is a computable sequence of com-
putable numbers. Finally, Theorem 5 in [35] implies that
f 6∈ CBpπ .

The statement CB∞π,0 ⊂ LCB∞π,0 is obvious since the
requirements in the definition of LCB∞π,0 are weaker than in
the definition of CB∞π,0.

XII. OVERSAMPLING

As discussed in Section VII, Definition 11 of the spaces
CCBpπ , p ∈ [1,∞) ∩ Rc, and CCB∞π,0 gives us much freedom
in the choice of the approximation process. This allows us
to connect these spaces with the oversampling behavior of
signals in Bpπ . In the case of oversampling, we can use more
general kernels for the approximation, which in turn enables
us to algorithmically control the convergence speed.

We will use Theorem 1 to study the behavior of signals in
CBpπ when oversampling is employed, and see that the space
CCBpπ plays an important role in this analysis. This is a further
example that illustrates the usefulness of different definitions
and characterizations of computable bandlimited signals.

Theorem 7. Let f ∈ Bpπ , p ∈ (1,∞) ∩ Rc. Then we have
f ∈ CBpπ if and only if there exists an â > 1, â ∈ Rc, such
that f ∈ CBpâπ .

Proof. Let f ∈ Bpπ , p ∈ (1,∞) ∩ Rc. “⇐”: Let â > 1,
â ∈ Rc be such that f ∈ CBpâπ . According to Theorem 1,
we have f ∈ CCBpâπ . Hence, due to Definition 11, f is a
computable continuous function, and there exists a recursive
function ξ : N→ N such that for all M ∈ N we have∣∣∣∣∣‖f‖pBpâπ −

∫ L

−L
|f(t)|p dt

∣∣∣∣∣ ≤ 1

2M
(12)

for all L ≥ ξ(M). Since ‖f‖Bpâπ = ‖f‖Bpπ , (12) is also true
if the Bpâπ-norm is replaced with the Bpπ-norm. This in turn
implies that f ∈ CCBpπ . Using Theorem 1 again, we see that
f ∈ CBpπ . “⇒”: Let f ∈ CBpπ . According to Theorem 1, we
have f ∈ CCBpπ . Using the same arguments as in the first part
of the proof, we see that f ∈ CCBpaπ for all a > 1, a ∈ Rc.
Using Theorem 1 again, it follows that f ∈ CBpaπ .

Remark 8. The proof of Theorem 7 shows for f ∈ Bpπ , p ∈
(1,∞) ∩ Rc, that if f ∈ CBpâπ for some â > 1, â ∈ Rc, then
we have f ∈ CBpaπ for all a ≥ 1, a ∈ Rc.

In the proof of Theorem 7 we also have implicitly proved
the following result, which is the statement of Theorem 7 for
CCBpπ .

Theorem 8. Let f ∈ Bpπ , p ∈ (1,∞) ∩ Rc. Then we have
f ∈ CCBpπ if and only if there exists an â > 1, â ∈ Rc, such
that f ∈ CCBpâπ .

For CCBpπ , p ∈ (1,∞)∩Rc, we have no difference between
oversampling and non-oversampling, which is expected since
â > 1 plays no role in the definition.

For the cases p = 1 and p = ∞, we have the next two
observations, which follow directly from the definitions of
CCB1

σ and CCB∞σ,0.

Observation 1. If f ∈ B1
π and f ∈ CCB1

aπ for some a > 1,
a ∈ Rc, then we have f ∈ CCB1

π .

Observation 2. If f ∈ B∞π,0 and f ∈ CCB∞aπ,0 for some a > 1,
a ∈ Rc, then we have f ∈ CCB∞π,0.

The goal of the rest of this section is to analyze whether,
for a > 1, a ∈ Rc, we can couple the behavior of f ∈ CBpaπ
with the behavior of f |Z/a.

Theorem 9. Let f ∈ Bpπ , p ∈ [1,∞) ∩ Rc. Then for a > 1,
a ∈ Rc, the following two statements are equivalent:

1) We have f ∈ CBpaπ .
2) f |Z/a = {f(k/a)}k∈Z is a computable sequence of

computable numbers and ‖f |Z/a‖`p ∈ Rc.

For the case p =∞, we have a similar result.

Theorem 10. Let f ∈ B∞π,0. Then for a > 1, a ∈ Rc, the
following statements are equivalent:

1) We have f ∈ CB∞aπ,0.
2) f |Z/a = {f(k/a)}k∈Z is a computable sequence of

computable numbers and f |Z/a ∈ Cc0.

In Theorem 9, we have in item 2 the requirement that
‖f |Z/a‖`p ∈ Rc. This is a weak requirement compared to
item 2 in Theorem 10, where, for p = ∞, we require that
f |Z/a ∈ Cc0. Note that f |Z/a ∈ Cc0 implies ‖f |Z/a‖`∞ ∈ Rc.
However, for x ∈ c0 with ‖x‖`∞ ∈ Rc we do not necessarily
have x ∈ Cc0.

If x ∈ c0 and x = {x(k)}k∈Z is a computable sequence of
computable numbers, we immediately see that ‖x‖`∞ ∈ Rc.
Since lim|k|→∞|x(k)| = 0, there exists a natural number
k̂ such that maxk∈Z|x(k)| = |x(k̂)|, and clearly we have
|x(k̂)| ∈ Rc, because {x(k)}k∈Z is a computable sequence
of computable numbers. However, using the techniques from
[44], it is possible to construct an x∗ ∈ c0 such that
x∗ = {x∗(k)}k∈Z is a computable sequence of computable
numbers, but we have x∗ 6∈ Cc0. We will use the same line of
arguments in the proof of Theorem 11.

Proof of Theorem 9. Let f ∈ Bpπ , p ∈ [1,∞)∩Rc, and a > 1,
a ∈ Rc.

We start with the case p ∈ (1,∞) ∩ Rc. Since f ∈ Bpπ , we
also have f ∈ Bpaπ , and the statement of the theorem follows
directly from [35, Theorem 5].

It remains to prove the case p = 1. “⇒”: Let f ∈ CB1
aπ .

We will show that statement 2) is true. Since f ∈ CB1
aπ ,

there exists a computable sequence {fn}n∈N of elementary
computable functions in B1

aπ with

‖f − fn‖B1
aπ
≤ 1

2n
(13)

for all n ∈ N. As an elementary computable function in B1
aπ ,

fn has the form

fn(t) =

Mn∑
k=−Mn

cn,k
sin
(
aπ(t− k

a )
)

aπ(t− k
a )

. (14)

Since
∞∑

k=−∞

∣∣∣∣fn(ka
)∣∣∣∣ =

Mn∑
k=−Mn

|cn,k|,
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according to (14), we see that{ ∞∑
k=−∞

∣∣∣∣fn(ka
)∣∣∣∣
}
n∈N

is a computable sequence of computable numbers. Further, we
have

∞∑
k=−∞

∣∣∣∣f (ka
)∣∣∣∣ ≤ C3(a)‖f‖B1

aπ
<∞, (15)

where we used Nikol’skiı̆’s inequality [37, p. 49] in the first in-
equality. Using the triangle inequality, Nikol’skiı̆’s inequality,
and (13), we obtain∣∣∣∣∣

∞∑
k=−∞

∣∣∣∣f (ka
)∣∣∣∣− ∞∑

k=−∞

∣∣∣∣fn(ka
)∣∣∣∣
∣∣∣∣∣

≤
∞∑

k=−∞

∣∣∣∣f (ka
)
− fn

(
k

a

)∣∣∣∣
≤ C3(a)‖f − fn‖B1

aπ
≤ C3(a)

2n
,

which shows that the convergence is effective. It follows that
∞∑

k=−∞

∣∣∣∣f (ka
)∣∣∣∣

is a computable real number. Further, since f ∈ CB1
aπ ,

{f(k/a)}k∈Z is a computable sequence of computable num-
bers. This completes the “⇒” direction of the proof.

“⇐”: Let f ∈ B1
π and a > 1, a ∈ Rc be such that

{f(k/a)}k∈Z is a computable sequence of computable num-
bers and ‖f |Z/a‖`1 ∈ Rc. Further, let κ ∈ CB1

aπ be defined in
the frequency domain by

κ̂(ω) =


1
a , |ω| ≤ π,
|ω|−aπ
aπ(1−a) , π < |ω| < aπ,

0, |ω| ≥ aπ.
(16)

Then we have

f(t) =

∞∑
k=−∞

f

(
k

a

)
κ

(
t− k

a

)
, t ∈ R, (17)

and the series in (17) converges absolutely. According to our
assumption, we have ‖f |Z/a‖`1 ∈ Rc. Thus, it follows that
there exists a recursive function η such that for all M ∈ N we
have ∑

|k|>N

∣∣∣∣f (ka
)∣∣∣∣ ≤ 1

2M
(18)

for all N ≥ η(M). Let M ∈ N be arbitrary but fixed, and let

fN (t) =

N∑
k=−N

f

(
k

a

)
κ

(
t− k

a

)
, t ∈ R.

Since {f(k/a)}k∈Z is a computable sequence of computable
numbers, and fN is the finite sum of functions, each of which
can be effectively approximated by elementary computable
functions in B1

aπ , it follows that fN ∈ CB1
aπ , and consequently

that {fN}N∈N is a computable sequence of computable func-
tions in CB1

aπ . Since we have

f(t)− fN (t) =
∑
|k|>N

f

(
k

a

)
κ

(
t− k

a

)
for all t ∈ R and N ∈ N. It follows that

∞∑
l=−∞

∣∣∣∣f ( la
)
− fN

(
l

a

)∣∣∣∣
≤

∞∑
l=−∞

∑
|k|>N

∣∣∣∣f (ka
)
κ

(
l

a
− k

a

)∣∣∣∣
=

∞∑
l=−∞

∣∣∣∣κ( la
)∣∣∣∣ · ∑

|k|>N

∣∣∣∣f (ka
)∣∣∣∣ ,

and, using Nikol’skiı̆’s inequality [37, p. 49], we obtain
∞∑

l=−∞

∣∣∣∣f( la
)
− fN

(
l

a

)∣∣∣∣ ≤ a(1 + π)‖κ‖1
∑
|k|>N

∣∣∣∣f(ka
)∣∣∣∣ .
(19)

Because of (18), the right-hand side of (19) converges effec-
tively to zero. According to [45, p. 182, Theorem 17], we
have ∫ ∞

−∞
|f(t)| dt ≤ C4(a)

∞∑
l=−∞

∣∣∣∣f ( la
)∣∣∣∣ ,

and it follows that∫ ∞
−∞
|f(t)− fN (t)| dt ≤ C4(a)a(1 + π)‖κ‖1

∑
|k|>N

∣∣∣∣f (ka
)∣∣∣∣ .

Hence, f is the effective limit in the B1
aπ-norm of {fN}N∈N,

which is a computable sequence of computable functions in
CB1

aπ . This implies that f ∈ CB1
aπ .

Proof of Theorem 10. Let f ∈ B∞π,0 and a > 1, a ∈ Rc. “⇒”:
Let f ∈ CB∞aπ,0. Then we have f |Z/a ∈ Cc0. “⇐”: Let f |Z/a ∈
Cc0. We use the same approach as in the proof of Theorem 9.
Let κ be as defined in (16) and

fN (t) =

N∑
k=−N

f

(
k

a

)
κ

(
t− k

a

)
, t ∈ R.

Since {f(k/a)}k∈Z is a computable sequence of computable
numbers, and fN is the finite sum of functions, each of which
can be effectively approximated by elementary computable
functions in CB∞aπ , it follows that fN ∈ CB∞aπ . We have

f(t) =

∞∑
k=−∞

f

(
k

a

)
κ

(
t− k

a

)
, t ∈ R,

and consequently

|f(t)− fN (t)| ≤
∑
|k|>N

∣∣∣∣f (ka
)
κ

(
t− k

a

)∣∣∣∣
≤ max
|k|>N

∣∣∣∣f (ka
)∣∣∣∣ ∞∑

k=−∞

∣∣∣∣κ(t− k

a

)∣∣∣∣
≤ max
|k|>N

∣∣∣∣f (ka
)∣∣∣∣ a(1 + π)‖κ‖1,
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where we used Nikol’skiı̆’s inequality [37, p. 49] in the last
inequality. Since the right-hand side does not depend on t, we
obtain

‖f − fN‖∞ ≤ max
|k|>N

∣∣∣∣f (ka
)∣∣∣∣ a(1 + π)‖κ‖1.

Since f |Z/a ∈ Cc0, there exists a recursive function η such
that for all M ∈ N we have

max
|k|>N

∣∣∣∣f (ka
)∣∣∣∣ ≤ 1

2M

for all N ≥ η(M). Hence, we see that ‖f − fN‖∞ converges
effectively to zero. This shows that f ∈ CB∞aπ,0.

We will show next that item 2 in Theorem 10 cannot be
weakened. Here we indeed need the condition f |Z/a ∈ Cc0,
the weaker condition ‖f |Z/a‖`∞ ∈ Rc is not sufficient.

Theorem 11. There exists a signal f ∈ B∞π,0 such that,
for some a > 1, a ∈ Rc, we have that f |Z/a =
{f(k/a)}k∈Z is a computable sequence of computable num-
bers and ‖f |Z/a‖`∞ ∈ Rc, but there exists no a > 1, a ∈ Rc,
such that f ∈ CB∞aπ,0.

Proof. We use the same function f3 as in proof of Theorem 5.
For this function we have f3 ∈ B∞π,0, ‖f3‖∞ ∈ Rc, and f3 is a
computable continuous function on R. Thus, since {k/a}k∈Z,
a > 1, a ∈ Rc is a computable sequence of computable
numbers and f3 is a computable continuous function, it follows
that {f3(k/a)}k∈Z is a computable sequence of computable
numbers. Further, since

lim
|k|→∞

∣∣∣∣f3

(
k

a

)∣∣∣∣ = 0,

there exists a natural number k̂ such that

max
k∈Z

∣∣∣∣f3

(
k

a

)∣∣∣∣ =

∣∣∣∣f3

(
k̂

a

)∣∣∣∣,
and clearly we have ∣∣∣∣f3

(
k̂

a

)∣∣∣∣ ∈ Rc,

because {f3(k/a)}k∈Z is a computable sequence of com-
putable numbers. Hence, wee see that ‖f |Z/a‖`∞ ∈ Rc.

The rest of the proof is done indirectly. We assume that
there exists an a > 1, a ∈ Rc, such that f3 ∈ B∞aπ,0, and show
that this assumption leads to a contradiction. Since f3 ∈ B∞aπ,0,
there exists a recursive function η : N → N such that for all
M ∈ N, we have |f3(t)| ≤ 2−M for all |t| ≥ η(M). This
follows from a straight forward adaption of [44, Theorem 6] to
signals with arbitrary bandwidth. However, in [44, Corollary 2]
it was proved for f3 that such a recursive function η cannot
exist.

The proof of Theorem 10 immediately leads to the following
theorem.

Theorem 12. Let f ∈ CCB∞π,0. Then we have f ∈ CB∞aπ,0 for
all a > 1, a ∈ Rc.

Proof. Let f ∈ CCB∞π,0 and a > 1, a ∈ Rc, be arbitrary. Then
we have f |Z/a ∈ Cc0. The rest of the proof is done exactly

along the same steps as in the “⇐” direction of the proof of
Theorem 10.

Combining several of our previous results, we obtain the
following corollary about CB∞π,0 and oversampling.

Corollary 2. Let f ∈ B∞π,0. If f ∈ CB∞âπ,0 for some â > 1,
â ∈ Rc, then we have f ∈ CB∞aπ,0 for all a > 1, a ∈ Rc.

Corollary 2 is essentially the statement of Remark 8 for
p = ∞. Note that in Corollary 2 we can only conclude that
f ∈ CB∞aπ,0 for all a that are strictly larger than one. This is
in contrast to Remark 8.

Proof of Corollary 2. Let f ∈ B∞π,0 and f ∈ CB∞âπ,0 for some
â > 1, â ∈ Rc. Then we have f ∈ CCB∞âπ,0, according to
Theorem 2. Further, Observation 2 implies that f ∈ CCB∞π,0.
Application of Theorem 12 completes the proof.

XIII. CONCLUSION AND OPEN PROBLEMS

Bandlimited signals and systems are important in signal
processing and system theory, because they provide a founda-
tion for the transition between discrete-time and continuous-
time signals and systems, and hence are essential for today’s
digital world. For the practical conversion of the discrete-time
signal into the continuous-time signal it is necessary that the
involved approximations and reconstructions can be performed
effectively with an algorithmic control of the error.

Bandlimited signals and the impulse responses of bandlim-
ited systems have the feature to be unlimited in time. In
the present paper we developed a theory for the effective,
i.e., algorithmic characterization of the time concentration
behavior of bandlimited signals and systems. For the range
p ∈ (1,∞)∩Rc, which covers the practically relevant signals
with finite energy, we could obtain a complete characterization.
For p = 1 and p = ∞, however, it is no longer that simple.
As discussed in Section II, both cases are important in system
theory. Hence, we believe the following list of open problems
is relevant.
Q1) Does there exist a signal f ∈ B1

π such that f ∈ CB1
aπ for

some a > 1, a ∈ Rc, and f 6∈ CB1
π?

Q2) Does there exist a signal f ∈ B∞π,0 such that f ∈ CB∞aπ,0
for some a > 1, a ∈ Rc, and f 6∈ CB∞π,0?

Q3) Does there exist a signal f ∈ B1
π such that f ∈ CCB1

π

and f 6∈ CB1
π?

Although the answers to these questions are open, we can
establish a connection between question Q1) and question Q3):
If the answer to question Q1) is positive, then the answer to
question Q3) is positive.

Corollary 2 shows that question Q2) is equivalent to the
question: Does there exist a signal f ∈ B∞π,0 such that f ∈
CB∞aπ,0 for all a > 1, a ∈ Rc, and f 6∈ CB∞π,0? There are
properties of signals in B∞π,0 that suggest that the answer to
this question, and hence to question Q2), is “yes”.

Questions of computational complexity are not treated in
the present paper. For example, different representations of
computable bandlimited signals could lead to different com-
plexities for their computation. In [46] it has been shown that
even simple analog systems can lead to a complexity blowup,
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where, for a polynomial complexity input signal, the output
signal has a high complexity. It would be interesting to study
similar questions for the different representations that we have
seen in this paper.

APPENDIX

Proof of Remark 1. We start with the case p ∈ [1,∞) ∩ Rc,
and show that if f ∈ CBpπ , p ∈ [1,∞)∩Rc, then we also have
that f : R→ R is a computable continuous function according
to Definition 7.

Let p ∈ [1,∞) ∩ Rc and f ∈ CBpπ be arbitrary. Then
there exists a computable sequence {fn}n∈N of elementary
computable functions in Bpπ such that ‖f − fn‖Bpπ ≤ 2−n for
all n ∈ N. Let {tn}n∈N be an arbitrary computable sequence
of computable numbers. Since

f(t) =

∫ ∞
−∞

f(τ)
sin(π(t− τ))

π(t− τ)
dτ, t ∈ R,

for all f ∈ Bpπ , it follows that

|f(t)− fn(t)| ≤
(∫ ∞
−∞
|f(τ)− fn(τ)|p dτ

) 1
p

×

×
(∫ ∞
−∞

∣∣∣∣ sin(π(t− τ))

π(t− τ)

∣∣∣∣q dτ

) 1
q

for all t ∈ R, where q, satisfying 1/q + 1/p = 1, is the
conjugate index of p. Further, since(∫ ∞
−∞

∣∣∣∣ sin(π(t− τ))

π(t− τ)

∣∣∣∣q dτ

) 1
q

=

(∫ ∞
−∞

∣∣∣∣ sin(πτ)

πτ

∣∣∣∣q dτ

) 1
q

,

we see that

C5(q) =

(∫ ∞
−∞

∣∣∣∣ sin(π(t− τ))

π(t− τ)

∣∣∣∣q dτ

) 1
q

is a computable constant. For p = 1 we have to choose q =
∞ and the Lq-norms in the above expressions are replaced
by the L∞-norm. For k ∈ N and n ∈ N, ζn,k = fn(tk)
defines a computable double sequence of computable numbers,
because every elementary computable function is a computable
continuous function [28, p. 27]. Further, according to the above
calculation, we have

|f(tk)− ζn,k| ≤
1

2n
C5(q).

This shows that {f(tk)}k∈N is a computable sequence of
computable numbers [28, p. 20, Proposition 1]. This proves
condition 1 of Definition 7.

Next, we prove condition 2. According to Bernstein’s in-
equality [37, Theorem 6.7, p. 49], we have ‖f ′‖Bpπ ≤ π‖f‖Bpπ .
Further, we have ‖f‖Bpπ ≤ ‖f1‖Bpπ + 1/2. Hence, it follows
that

‖f ′‖Bpπ ≤ π
(
‖f1‖Bpπ +

1

2

)
and consequently that

|f ′(t)| ≤ C5(q)π

(
‖f1‖Bpπ +

1

2

)

for all t ∈ R. The mean value theorem gives

|f(t1)− f(t2)| = |f ′(τ)| · |t1 − t2|

≤ C5(q)π

(
‖f1‖Bpπ +

1

2

)
|t1 − t2|.

Let k̂ ∈ N be such that

C5(q)π

(
‖f1‖Bpπ +

1

2

)
< 2k̂.

Let M ∈ N be arbitrary. Then, for all t1, t2 with |t1 − t2| <
1/2k̂+M , we have |f(t1)− f(t2)| ≤ 1/2M . That is, condition
2 of Definition 7, even independently of L.

For p = ∞, i.e., f ∈ CB∞π,0, we use the inequality |f(t)−
fn(t)| ≤ ‖f − fn‖B∞

π
, which holds for all t ∈ R. The rest

of the proof is done analogously to the proof of the case p ∈
[1,∞) ∩ Rc.
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